
From Gaps to Transformation Paths in
Enterprise Architecture Planning

Philipp Diefenthaler1,2 and Bernhard Bauer2

1 Softplant GmbH, Munich, Germany,
philipp.diefenthaler@softplant.de,

2 Institute for Software & Systems Engineering, University of Augsburg, Germany
firstname.lastname@informatik.uni-augsburg.de

Abstract. Planning changes in an enterprise and its supporting IT
can be supported by enterprise architecture (EA) models. The planned
changes result in gaps which can be derived by a gap analysis. But, know-
ing the gaps is not enough. Also important is to know in which sequence
gaps are to be closed for transformation path planning. In this paper we
show how gaps are identified and reused for detailing a model of the tar-
get architecture. Based on this refinement further gaps become visible.
Furthermore, we describe how it is possible to create with a transfor-
mation model and an action repository transformation paths towards a
desired and detailed target architecture. Afterwards, we give a use case
example and propose a technical realization of the solution.

Key words: enterprise architecture planning, gap analysis, transforma-
tion model, graph transformation

1 Introduction

Enterprises nowadays face challenges like changing markets, security threats,
evolving technologies and new regulations that drive the need to adapt the en-
terprise. Enterprise architecture management (EAM) supports this change in a
structured manner. An enterprise architecture (EA) is the “fundamental orga-
nization of a system [the enterprise] embodied in its components, their relation-
ships to each other, and to the environment, and the principles guiding its design
and evolution”[1].

Models of this architecture can support decision making for planning pur-
poses. Such EA models cover aspects from business, processes, integration, soft-
ware and technology [2]. To cope with the complexity of an EA it is crucial
for enterprises to use a managed approach to steer and control the redesign of
the enterprise. The complexity arises from the level of abstraction, the num-
ber of stakeholders involved, and the change of internal and external conditions
inherent to EAs.

To plan the change it is necessary to have a plan basis, i.e. the current archi-
tecture, and to know the goal of planning activities, i.e. the target architecture.
According to [3, 4] the planning activities take place at different decision levels.

2 Philipp Diefenthaler and Bernhard Bauer

Each of them varies in detail and levels of abstraction seem to be inevitable
[4]. The need to change and the resulting moving target are challenges for EA
planning, as part of the EAM, has to meet [5, 6].

EAM and particularly EA planning is supported by tools which allow the
creation of visualizations, automated documentation and analysis of EA models.

In this paper we describe how gaps can be derived from two EA models for
different points in time. Furthermore, we introduce the transformation model by
Aier and Gleichauf [7] to connect architectural building blocks from the models
of the current and target EA. With the results from gap analysis and the infor-
mation contained in the transformation model we introduce an action repository
for the creation of different transformation paths. We exemplify the solution to
get from gaps to transformation paths based on a model of a current and target
architecture of an application architecture within a use case for a master data
consolidation challenge. Furthermore, we propose a technical realization based
on semantic web technologies and graph transformations.

2 Foundations

This section gives an introduction to the foundations of EA models and their
usage for planning purposes. Furthermore, we introduce semantic web technolo-
gies and graph transformations for planning purposes, as they are of relevance
for our proposed technical realization of the solution.

2.1 Enterprise Architecture Models

According to Buckl and Schweda [8] EAM follows a typical management cycle
that consists of the phases plan, do, check and act. The plan phase is concerned
with developing change proposals that are implemented in the do phase. Within
the check phase differences between intended and actually achieved results are
controlled. Based upon the results from the check phase the act phase provides
input to the plan phase by supplying information for the next plan phase. Models,
as an abstraction mechanism, of an enterprise, can support the plan phase as
part of an EAM approach [9, 10].

EA models can be used to describe an EA for different points in time [8]. The
model of the current architecture of the enterprise is a documented architecture
at the present point in time and serves as a starting point for defining a model of
a target architecture. In contrast the model of the target architecture represents
a desired architecture in the future which can be used to guide the development
of an EA from the current towards a target architecture. The development of
a target architecture depends on the enterprises’ EA goals. It is influenced by
business requirements, strategic goals and IT objectives like master data con-
solidation, improving the flexibility of IT and drive the coverage of standard
platforms [11].

From Gaps to Transformation Paths in Enterprise Architecture Planning 3

Which factors and how exactly they influence the target architecture depends
on the architecture method applied and how it is integrated into the enterprise‘s
governance processes.

A gap analysis, sometimes also referred to as delta analysis, is the comparison
between two models of an EA that is used to clarify the differences between those
two architectures. Different models of architectures that can be compared are
current to target, current to planned, planned to target and planned to planned
[8].

2.2 Semantic Web Technologies in a Nutshell

Semantic web technologies are used to integrate heterogeneous data sets and
formalize the underlying structure of the information to allow a machine to
understand the semantics of it [12]. The World Wide Web Consortium (W3C)
provides a set of standards to describe an ontology and to query it. An ontology
“is a set of precise descriptive statements about some part of the world (usually
referred to as the domain of interest or the subject matter of the ontology)” [13].

Two standards are of relevance for a proposed technical realization: firstly,
the Web Ontology Language (OWL) [13] for making descriptive statements and
secondly, the SPARQL Query Language for RDF (SPARQL) [14], which allows
querying these statements.

The Resource Description Framework (RDF) [15] is a basis for both stan-
dards, as OWL ontologies can be serialized as RDF graphs and can be accessed
via SPARQL. An RDF graph consists of triples of the form ‘subject, predicate,
object’, whereas subjects and objects are nodes and predicates are relations.
Every resource in an ontology is identified by a resource identifier which allows
for example distinguishing between a bank in a financial context and a bank of
a river. Information from the ontology is queried via SPARQL, which provides
the resources that match patterns specified within the query.

Semantic web technologies have already been applied to domains of interest
that range from semantic business process modeling [16] to diagnosis of embed-
ded systems [17]. First implementations based upon semantic web technologies
for EAM already exist from TopQuadrant with its TopBraid Composer1 and
Essential Project2.

2.3 Graph Transformations for Planning Purposes

Several different approaches, techniques and representations to planning prob-
lems have been developed over the last decades [18, 19]. These approaches range
from state space model based planning to task networks, where tasks for reaching
a goal are decomposed and sequenced. A state space based approach is prefer-
able, because models of the current and target architecture are used in many
EAM approaches [20, 21, 5, 11] and are present in tools used in practice [22].

1 www.topquadrant.com/docs/whitepapers/WP-BuildingSemanticEASolutions-
withTopBraid.pdf

2 www.enterprise-architecture.org/

4 Philipp Diefenthaler and Bernhard Bauer

Graph transformations for AI planning purposes solve a planning problem
by applying graph transformations to a model until a solution for the planning
problem is found. The result of such a planning process is a sequence of actions
changing a model into another model.

However, graph transformations have the disadvantage that they provide a
huge state space regarding the states, which have to be examined when all states
in the graph are computed. As a consequence this influences the computation
time of all possible worlds created through the transformations. With graph
transformations a planning problem can be solved by searching for graph pat-
terns in a state represented by a graph and applying graph transformations to
change the state [23]. Graph transformations have the benefit that they have a
sound theoretical foundation [24].

3 From Gaps to Transformation Paths as Sequences of
Actions

The goal of the proposed approach is to deliver a more detailed model of the
target architecture by making suggestions to a domain expert how a detailed
target architecture could look like. Afterwards, we describe how these gaps are
related to each other to generate a transformation path which allows to structure
change activities, which close gaps, in sequence of actions.

3.1 Modeling Current and Target Architecture

First, a current architecture is modeled and afterwards, a target architecture is
modeled, at the same level of detail. We reuse the model of the current architec-
ture and change it to the desired target architecture. The same level of detail is
necessary to ensure the comparability of the models.

The current architecture may be more detailed, but can be aggregated in a
way which restores the comparability [25]. Business support maps, which relate
applications to supported processes and organization units, are an example for
such a model with the same level of detail [11].

Results of the Modeling The result of this phase are the two sets:
currentArchitecture = model of the current architecture of the EA
targetArchitecture = model of the target architecture of the EA
In our solution the core of an EA model is a set which consists of three different
types of elements. The EA model contains the architecture building blocks (B)
of the EA, relations between architecture building blocks (R) and attributes of
architecture building blocks (A). In this sense an EA model can be defined as:
M := {B ∪R ∪A}
B := {x | x is an architecture building block}
R := {x | x ∈ B ×B} and A := {x | x ∈ B × V }

From Gaps to Transformation Paths in Enterprise Architecture Planning 5

Architecture building blocks stand for the elements of the EA, for instance
a Customer Relationship Management application within the application archi-
tecture. Relations hold between these architecture building blocks, for exam-
ple when an application depends on another application the respective building
blocks are connected by a dependency relation. Attributes are values associated
with architecture building blocks that characterize measurable and observable
characteristics of the architecture building block, e.g. the release number of an
application or the uptime of an service.

3.2 Performing Gap Analysis

Gap analysis is performed to compare the modeled current and target archi-
tecture. It compares the differences between currentArchitecture and targetAr-
chitecture. In terms of a set operation this comparison corresponds to a in-
tersection of the two compared sets. As a result three subsets are identified:
onlyCurrentArchitecture, onlyTargetArchitecture and stable.

Results of Gap Analysis onlyCurrentArchitecture is the set of building blocks,
relations and attributes which only exist in the model of the current architecture.
onlyCurrentArchitecture := {x | x ∈ currentArchitecture

∧ x /∈ targetArchitecture}
In contrast, onlyTargetArchitecture is the set of building blocks, relations and
attributes which only exist in the target architecture.
onlyTargetArchitecture := {x | x /∈ currentArchitecture

∧ x ∈ targetArchitecture}
The third set stable is the set of building blocks, relations and attributes which
the current and target architecture have in common.
stable := {x | x ∈ currentArchitecture ∧ x ∈ targetArchitecture}

3.3 Setting the Successor Relationships for Building Blocks

The successor relationships are modelled within a transformation model [7]. The
transformation model is defined as follows:
transformationModel := {x | x ∈ currentArchitecture× targetArchitecture}

With the successor relationships at hand it is possible to identify the succes-
sor type for building blocks which can be divided into noSuccessor, noPredeces-
sor, oneToOne, oneToMany, manyToOne, and manyToMany. The inverse of the
successor relation is the predecessor relation.

All building blocks in onlyCurrentArchitecture that do not have a successor
belong to the set noSuccessor. All building blocks that belong to onlyTargetArchitecture
and do not have a predecessor belong to the set noPredecessor. The set oneToOne
consists of the pairs of building blocks that have exactly one successor and this
successor has only one predecessor.

oneToMany is the set of building blocks that have several successors in the
target architecture whereas the set manyToOne is the set of building blocks
which have the same successor in the target architecture. manyToMany is the

6 Philipp Diefenthaler and Bernhard Bauer

set of building blocks which have common successors, which in turn have several
predecessors. By querying the models we can determine to which set a building
block belongs.

A successor relationship is part of exactly one of the above subsets. Within
the six different sets disjoint subsets exist. For the noSuccessor and noPredeces-
sor set each building block represents a disjoint subset and are planned inde-
pendently in contrast to the other successor sets. This is an implicit information
of the transformation model, as we do not model self-directed relations for this
information.

3.4 Creating Suggestions for a Detailed Target Architecture

In order to make suggestions the model of the current architecture considers ap-
plications, services and business building blocks. Business Building Blocks are in
a tight relationship with the business activities of an enterprise but implemen-
tation independent. With the detailed information of the current architecture
and the successor relationships at hand for applications it is possible to generate
suggestions how a model of a detailed target architecture could look like.

Each application belongs to exactly one subset of the transformation model.
Different suggestions are made for the subsets how to detail the target architec-
ture. By following a suggestion the target is stepwise getting more detailed, as
all sets of successor relationships are getting processed. A suggestion may be in-
appropriate for a domain expert she can overrule it by modeling different details.
The result is a model of a detailed target architecture. At first all services are
transferred to the model of a detailed target architecture. Then the dependencies
can be added to the model of the detailed target architecture.

Suggestions for Provided Services

1. noSuccessor set: for each provided service in the current architecture check
if it is used by an application that is part of the target architecture or the
consuming application has a successor relationship.
a) If there are any applications it is necessary to check if they still can work

properly without consuming the service.
b) Otherwise, no information from the current architecture is added to the

target architecture.
2. noPredecessor set: it is not possible to suggest a detail for the target ar-

chitecture as there exists no detail in the current architecture. A manual
addition of provided services and their business building blocks in the target
architecture is necessary.

3. oneToMany set:
a) If the predecessor is part of onlyCurrentArchitecture all provided services

of the predecessor, including their business building blocks, are suggested
to be provided by one of the successor applications.

b) Otherwise, all provided services and business building blocks of the pre-
decessor are suggested to be provided by one of the successor applications
or the remaining part of the predecessor in the target architecture.

From Gaps to Transformation Paths in Enterprise Architecture Planning 7

4. manyToOne set:
a) If the successor is part of onlyTargetArchitecture it is suggested to pro-

vide each service of its successors, but only one per business building
block.

b) Otherwise, it is suggested that the successor provides the services already
provided in the current architecture, i. e. by itself, and provide all services
of the other predecessors, but only one per business building block.

5. manyToMany set: All provided services are suggested to be provided by
one of the successors. If more than one predecessor provides a service
with the same business building block the suggestion is to provide only
one service in the target architecture with such a business building block.
Further suggestions were not identified as this type represents a complex
type of restructuring. Nevertheless, the domain expert should be supported
with information about applications changing business support and assigned
customer groups. Furthermore, information which applications belong to
onlyCurrentArchitecture and onlyTargetArchitecture needs to be presented
to the domain expert.

6. oneToOne set: all services, including their business building blocks, provided
by the predecessor are suggested to be provided by the successor.

7. Furthermore, the domain expert can model additional services or let sug-
gested services be provided by an application that is not a successor of the
application that provided it in the current architecture.

8. For each service information is stored if it is the successor of one or more
services in the current architecture. This is necessary to allow a sound trans-
formation planning [9].

As a result all provided services have been modeled in the target architecture
including their business building blocks. Furthermore, the information about
successor relationships of the services is available.

Suggestions for Used Services

1. manyToMany set: all used services of predecessors are suggested to be used
by at least one successor. The domain expert can choose if more than one
successor uses the service of a predecessor.

2. oneToOne set: all services used by the predecessor are suggested to be used
by the successor.

3. manyToOne set: used services of the predecessors are suggested to be also
used in the target architecture.

4. oneToMany set:
a) If the predecessor is part of onlyCurrentArchitecture all used services of

the predecessor are suggested to be used by one of the successor appli-
cations.

b) Otherwise, all used services of the predecessor are suggested to be used by
one of the successor applications or the remaining part of the predecessor
in the target architecture.

8 Philipp Diefenthaler and Bernhard Bauer

5. noPredecessor set: which services are used by the application need to be
modeled manually as no information from the model of the current architec-
ture is available.

6. noSuccessor set: as the application does not exist in the model of the target
architecture no information about used services needs to be added to the
target architecture.

7. Furthermore, the domain expert can model additionally used services for
every application.

Results of the Guided Refinement The result is a model of a detailed target
architecture including provided and used services with related business building
blocks. Consistency checks can be performed on the model to check whether
services exist which are provided but no longer used by any application. Gap
analysis can be performed again and the detailed gaps between the models of
the current and target architecture are available.

With the results of gap analysis and a detailed current architecture it is
possible to assist a domain expert in modeling a detailed target architecture
by making suggestions how to detail it based on the current architecture. The
variety of suggestions that can be provided is limited to the information available
in the EA model. For example, technical information about the services can
be added to allow more sophisticated suggestions, like to prefer web service
technology for services of applications that have to be build.

3.5 Creating an Action Repository

Before the transformation path from the current to the target architecture can
be created, it is necessary to describe possible changes in a way which allows the
sequencing of actions. This is realized with an action repository where abstract
actions are modeled. An abstract action consists of two parts. One part specifies
the preconditions for an action to be applicable. The other part is the effect part,
which specifies the changes to an architecture model if an (abstract) action is
applied to it.

The creation of the action repository is only done once as the actions are
described on an abstract level. However, if the meta-model of the EA changes
the actions in the action repository need to be checked if they are impacted by
these changes.

In a technical sense the abstract action matches via a graph pattern into the
concrete model of the different states. Concrete actions relate to concrete entities
and relationships in an architecture model and concrete changes to the state of
architecture models. The application of a concrete action to an architecture
model, may enable the application of several other concrete actions.

Abstract actions are either atomic or composed. An atomic action changes ex-
actly one element of either currentArchitecture or targetArchitecture. Composed
actions are a composition of other actions, regardless if atomic or composed. To
create a transformation path it is necessary to model at least abstract actions
for shutting down and developing building blocks and abstract actions that take

From Gaps to Transformation Paths in Enterprise Architecture Planning 9

care of the relationships between the building blocks and the attributes of the
building blocks.

Logical Order of Abstract Actions The abstract actions are modeled in
a logical order, which means that it is only possible to apply the action if the
preceding actions were already applied. For example, it is not possible to change
the dependencies from a service to its successor service if it has not yet been
built. Furthermore, it may be necessary to build the application first to allow the
creation of a new service. After the dependencies of a service have been changed
to a successor it is possible to shutdown the service.

If all services of an application have been shutdown it is possible to shutdown
the application. The logical order prevents the creation of loops in the transfor-
mation path, i.e. to shutdown and create the same application several times. It
may be the case that it is not necessary to enact the develop application action.
For example, if a service which has to be developed for an application that al-
ready exists. In this case it is not necessary to develop that application again
since it already exists in the current architecture. The logical order prevents the
shutdown of the predecessor services, until the successor service is developed.

3.6 Creating the Transformation Path

With the action repository, the transformation model, the models of current
architecture and target architecture at hand it is possible to start the creation
of possible transformation paths.

We derive all applicable concrete actions by checking which preconditions of
abstract actions match in
planningKnowledgeBase := {transformationModel ∪

currentArchitecture ∪ targetArchitecture}
This corresponds to a breadth search of applicable actions for a possible change
from the current towards the target architecture. If a concrete action is applied to
planningKnowledgeBase it changes the state of the planningKnowledgeBase. In
contrast if we apply a depth search we receive a transformation path changing the
EA in a sequence of concrete actions from the current to the target architecture.
If no such transformation path exists the more exhaustive breadth search can
be omitted and we are informed that no transformation path was found. By
applying the breadth search on each state recursively and we get the whole state
space.

With the state space it is possible to determine all possible transformation
paths from the current to the target architecture. By selecting concrete actions
we create the transformation path, change the planningKnowledgeBase and get
each time a list of concrete actions which we now can apply. When the transfor-
mation path is complete, i.e. all necessary changes have been applied, no further
actions are applicable and the transformation path is saved. If gaps are not to
be closed it is possible to stop the creation of the transformation path.

The selection process for choosing concrete actions can be enhanced by pro-
viding development costs for proposed applications and services, and mainte-

10 Philipp Diefenthaler and Bernhard Bauer

nance costs for applications and services which are to be retired. Furthermore,
the consideration of desired benefits, anticipated risks and resource constraints
could be considered if available to allow for a weighting of favorable sequences
of actions.

4 Use Case - Development Master Data Management

In the past, applications were often developed to address the specific business
needs that a part of the organization had at a certain moment. However, consid-
ering the whole enterprise it is not effective to store redundant data in several
applications as this increases the risk of outdated and inconsistent data. This
is the basis for the master data management (MDM) challenge [26]. In our use
case we show a typical (and simplified) example for the introduction of master
data management in the research and development division of an organization.
Figure 1 shows a part of the model of the current architecture of the organiza-

DevManager

Quality tests
planning tool

Product planning
tool

MasterData_v2 MasterData_v1

Development master
data management
system (DMDM)

Physical quality
test assistance

tool

Physical quality
test result
database

Virtual quality
test result
database

Product class A
assistance
database

Product class B
assistance
database

QueryDev_v1

Current architecture

Fig. 1. Master data management: current architecture

tion’s IT landscape. There has already been placed a development master data
management (DMDM) system in the organization which provides services (Mas-
terData v1 and v2) to other applications. However, not all existing applications
use the master data provided by DMDM: the application DevManager provides
similar data that is still used by existing applications such as the product plan-
ning tool and the quality tests planning tool.

Other applications such as the virtual quality test result database store the
master data themselves and are not connected to DMDM. For the modification
of products (from one test to another) there exist two applications for the differ-
ent product classes the organization provides to their customers. Additionally,
applications to plan the product, the quality tests and store the results that
have been gathered during the (physical or virtual) quality tests, exist. In the
model of the target architecture the functionality in the different applications
shall be united and all other tools will use the data provided by DMDM. There
will be only one planning tool that includes planning for the product as well as
the quality tests. All quality tests (including the results) will be managed by one
quality test assistance and result management tool (cf. Figure 2).

From Gaps to Transformation Paths in Enterprise Architecture Planning 11

Development master
data management
system (DMDM)

Target architecture

Product and Quality
test planning tool

PlanningData_v1

Quality test assistance
and result management

tool

Product modification
assistance database

MasterData_v3

Fig. 2. Master data management: target architecture

Please note that Figure 1 and 2 already contain the services, which may not
be considered in the first place for planning purposes.

Solution Applied to the Use Case

At first currentArchitecture and targetArchitecture are created by modelling both
architectures. Applying gap analysis it is possible to derive that onlyCurrentArchitecture
contains: DevManager, Product Planning Tool, Quality tests planning tool,
Physical quality test assistance tool, Physical quality test result database, Vir-
tual quality test result database, Product class A assistance database, Product
class B assistance database, QueryDev v1, MasterData v1 and v2.

The set stable contains only Development master data management system
(DMDM) whereas onlyTargetArchitecture contains Product and Quality test
planning tool, Quality test assistance and result management tool, Product mod-
ification assistance database, MasterData v3 and PlanningData v1.

Within the transformation model information on the successor relationships
is kept: Product planning tool and Quality tests planning tool have the same
successor (Product and Quality test planning tool). Physical quality test assis-
tance tool, Physical quality test result database and Virtual quality test result
database have the Quality test assistance and result management tool as a com-
mon successor. DMDM is a successor of itself, which is in accordance with [7],
and DevManager has no successor. Product modification assistance database is
the successor of Product class A assistance database and product class B assis-
tance database.

Regarding the services the following successor relationships are contained in
the transformation model: MasterData v3 is a successor of MasterData v1 and
v2. The QueryDev v1 has no successor and PlanningData v1 has no predecessor.

Based upon this information the action repository can show that it is possible
to develop MasterData v3 in the first place or one of the successor applications.

If for example as the first action the development of MasterData v3 is selected
it is possible to take care of the dependencies of applications to the predecessors
of the service. After removing the dependencies and creating the new ones to the
successor service it is possible to shutdown the predecessors. The development
of the new applications are to be selected as the next steps in the transformation
path. The remaining actions are not described in detail, however their sequence
is constrained by the logical order of the abstract actions.

12 Philipp Diefenthaler and Bernhard Bauer

5 Discussion

The discussion is divided into two parts. At first we discuss the results of solution
and its application to the use case. After that, the limitations of the solution are
presented.

The solution describes how it is possible to derive gaps between the models
of a current and target architecture for planning purposes using a set theoretic
description. With the gaps at hand and information regarding the successor
relationships of elements the solution reuses existing information to aid in the
detailing the model of the target architecture. Afterwards, an action repository
aids in the creation of possible transformation paths, which are sequences of
actions. Overall, the solution considers a domain expert as an important part of
the activities and assists her in the decision making process.

Creating suggestions for detailing the model of a target architecture is only
possible if business building blocks are available. However, the mechanism of
gap analysis, the transformation model and the creation of transformation paths
using the action repository are not impacted by this limitation.

Furthermore, requirements regarding the meta-model are posed by the solu-
tion. If the EAM approach does not concern application architectures, and as a
consequence the models of applications and their dependencies to services, the
solution would in its current shape not be suitable. However, the mechanisms as
described in the solution can be adapted to aid in the modelling and creation of
transformation paths which address the concerns of the stakeholders. From our
point of view, applications and their provided services are an important part of
an EA.

Currently, we create the connection of the models of the current and tar-
get architecture manually, which is prone to errors and time consuming. The
model of the target architecture does currently not consider information which
transformation paths, taking technology architecture aspects into account, are
possible.

6 Proposed Technical Realization

Using semantic web technologies for formalizing information sources yields a
number of advantages, starting with having a formal, unambiguous model to
the possibilities of reasoning and consistency checking. The knowledge base con-
taining, the current and target EA models, as well as the transformation model,
can be consulted at run time by humans as well as by applications.

Identifying gaps can be realized using standard tools like Protégé3 for mod-
eling and OWLDiff4 for comparing the modeled EAs. For detailing the model of
the target architecture we suggest the usage of SPARQL as it allows querying
and adding information in a semi-automated manner.

3 http://protege.stanford.edu/
4 http://krizik.felk.cvut.cz/km/owldiff/

From Gaps to Transformation Paths in Enterprise Architecture Planning 13

Regarding the creation of transformation paths we suggest to use a more
sophisticated graph transformation approach, as it provides the expressiveness
necessary for the creation of transformation paths. This requirement exceeds the
current capabilites of SPARQL. A promising World Wide Web Consortium stan-
dard is the Rule Interchange Format5 (RIF), which initial purpose was the ex-
change of rules. The second edition of RIF provides an action language which can
be used to express the actions necessary for transformation path planning. How-
ever, we were not able to test the proposed solution as no free implementations
are available yet. Therefore, we propose to use a mature graph transformation
tool like GROOVE6.

However, this proposed technical realization requires a model to model
(M2M) transformation of the ontologies to a model which is interpretable for
a graph transformation approach.

7 Related Work

In this section related work is introduced. As a starting point the technical report
‘On the state of the Art in Enterprise Architecture Management Literature’ [8]
was taken, as they consider gap (delta) analysis as part of the different EAM
approaches. Besides the listed approaches in the technical report an approach
from the University of Oldenburg and a technical standard from The Open Group
was identified as relate work.

7.1 University of Oldenburg

The Institute for Information Technology of the University of Oldenburg presents
a tool supported approach for performing a gap analysis on a current and ideal
landscape [27]. The approach is tightly coupled to the Quasar Enterprise ap-
proach, which can be used to develop service-oriented application landscapes.

In order to be able to perform their gap analysis it is necessary to model the
current application landscape consisting of current components, current services,
current operations and business objects. The ideal landscape is modeled with
ideal components, ideal services, ideal operations and domains. Based on these
two models the tool is capable to generate a list of actions that would, if all were
applied, result in the ideal landscape. Within the paper the suggested procedure
for selecting actions is to allow an architect to select certain actions that result
in a target. Furthermore, the tool is capable to provide metrics for quantitative
analysis of the application landscape.

Gringel and Postina state that gap analysis needs a “detailed level of descrip-
tion when it comes to modeling both landscapes” ([27], p. 283) and as a result
the “data necessary to perform gap analysis on the entire application landscape
on a detailed level considering operations is overwhelming” ([27], p. 291). How

5 http://www.w3.org/TR/2013/NOTE-rif-overview-20130205/
6 http://groove.cs.utwente.nl/

14 Philipp Diefenthaler and Bernhard Bauer

the different actions interfere with each other is not considered and actions can
only be provided if an ideal landscape with all details has been modeled.

7.2 Strategic IT Managment by Hanschke

The ‘Strategic IT Management’ [11] approach is intended to serve as a toolkit
for EAM by providing best-practices derived from work experience. After a tar-
get architecture has been modeled and agreed upon gap analysis is used to
detect differences between the current and target architecture. Gap analysis is
performed on the basis of process support maps visualizing which applications
support which business processes (x-axis) and which customer group (y-axis)
the applications are assigned to. For a more fine grained gap analysis Hanschke
suggests to additionally add information about services and information objects
of the applications. Afterwards, for each gap possible actions to close the gap
are considered.

The actions range from introducing a new application, adding or reducing
functionality of an existing application, changing or adding services to the shut
down of applications and services. Based upon the results of gap analysis and
derivation of appropriate actions it is necessary to clarify dependencies between
the actions, bundle the actions and create planned architectures as recommenda-
tions for change. As far as we were able to verify the limitations of the tool and
approach it is not possible to create suggestions for a detailed target architecture.

7.3 ArchiMate

ArchiMate ([21], chapter 11) introduces an Implementation and Migration Ex-
tension including a Gap element. A gap can be associated with any core element
of the ArchiMate meta-models, except for the Value and Meaning element. In
general, a gap links several elements of two EA models and contains elements to
be removed (retired) and to be added (developed). The linkage of the differences
between the EA models and the resulting gap is not described.

8 Future Work

Creating transition architectures as plateaus (see [21]) between the current and
target architecture should be supported by actions. A plateau is a stable state
of the EA. The current and target architecture are also plateaus according to
ArchiMate. However, we need to identify at first in which situations actions are
of relevance for transition architecture creation and if it is possible to provide
meaningful support for a domain expert.

A value based weighting for different transformation paths is currently elab-
orated to support a domain expert with information which paths seem to be
more promising than others. This ranking will take into account different factors
relevant for transformation planning.

From Gaps to Transformation Paths in Enterprise Architecture Planning 15

The methodology how to create, use and maintain the action repository is
currently extended to cope with different EA models and different concerns which
need to be addressed during transformation planning.

9 Conclusion

We have shown how it is possible to get from identified gaps to transformation
paths by creating a transformation model, detailing a target architecture and
using an action repository to create possible sequences of actions for transfor-
mation paths.

An use case for parts of an application architecture was presented and the so-
lution was applied to it. Furthermore, we presented a proposition for a technical
realisation to allow for tool support.

We discussed the results and limitations of the solution and clarified its con-
nection to related work. Future work to be addressed was also presented.

References

1. International Organization for Standardization: Standard for systems and soft-
ware engineering - recommended practice for architectural description of software-
intensive systems (2007)

2. Winter, R., Fischer, R.: Essential layers, artifacts, and dependencies of enterprise
architecture. In: 2006 10th IEEE International Enterprise Distributed Object Com-
puting Conference Workshops (EDOCW’06), IEEE (2006) 30

3. Pulkkinen, M., Hirvonen, A.: Ea planning, development and management pro-
cess for agile enterprise development. In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, IEEE (2005) 223c

4. Pulkkinen, M.: Systemic management of architectural decisions in enterprise archi-
tecture planning. four dimensions and three abstraction levels. In: Proceedings of
the 39th Annual Hawaii International Conference on System Sciences (HICSS’06),
IEEE (2006) 179a

5. Niemann, K.D.: From enterprise architecture to IT governance: Elements of effec-
tive IT management. Vieweg, Wiesbaden (2006)

6. Aier, S., Gleichauf, B., Saat, J., Winter, R.: Complexity levels of representing
dynamics in ea planning. In Albani, A., Barjis, J., Dietz, J.L.G., eds.: Advances
in Enterprise Engineering III. Springer Berlin Heidelberg, Berlin and Heidelberg
(2009) 55–69

7. Aier, S., Gleichauf, B.: Towards a systematic approach for capturing dynamic
transformation in enterprise models. In Sprague, R.H., ed.: Proceedings of the
43rd Annual Hawaii International Conference on System Sciences. IEEE Computer
Society, Los Alamitos and Calif (2010)

8. Buckl, S., Schweda, C.M.: On the State-of-the-Art in Enterprise Architecture
Management Literature. (2011)

9. Aier, S., Gleichauf, B.: Application of enterprise models for engineering enterprise
transformation. Enterprise Modelling and Information Systems Architectures 5(1)
(2010) 56–72

16 Philipp Diefenthaler and Bernhard Bauer

10. Buckl, S., Ernst, A.M., Matthes, F., Schweda, C.M.: An information model cap-
turing the managed evolution of application landscapes. Journal of Enterprise
Architecture 5(1) (2009) 12–26

11. Hanschke, I.: Strategisches Management der IT-Landschaft: Ein praktischer Leit-
faden für das Enterprise Architecture Management. 1. edn. Hanser, München
(2009)

12. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intel-
ligent Systems 21(3) (2006) 96–101

13. Motik, B., Patel-Schneider, P. F., Horrocks, I.: Owl 2 web ontology language:
Structural specification and functional-style syntax (2009)

14. Prud’hommeaux, Eric, Seaborne, Andy: SPARQL Query Language for RDF.
World Wide Web Consortium (2008)

15. Manola, F., Miller, E., McBride, B.: RDF Primer. World Wide Web Consortium
(2004)

16. Lautenbacher, F.: Semantic business process modeling: Principles, design support
and realization. Shaker, Aachen (2010)

17. Grimm, S., Watzke, M., Hubauer, T., Cescolini, F.: Embedded el + reasoning on
programmable logic controllers. In Hutchison, D. et al., ed.: The Semantic Web
– ISWC 2012. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
Berlin and Heidelberg (2012) 66–81

18. Russell, S.J., Norvig, P.: Artificial intelligence: A modern approach. 3 edn. Prentice
Hall, Upper Saddle River (2010)

19. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning: Theory & practice.
Morgan Kaufmann and Elsevier Science, San Francisco and Calif and Oxford
(2004)

20. The Open Group: TOGAF Version 9.1. 1 edn. TOGAF series. Van Haren Pub-
lishing, Zaltbommel (2011)

21. The Open Group: Archimate 2.0 Specification. Van Haren Publishing (2012)
22. Matthes, F., Buckl, S., Leitel, J., Schweda, C.M.: Enterprise architecture manage-

ment tool survey 2008. Technische Universität München, München (2008)
23. Edelkamp, S., Rensink, A.: Graph transformation and ai planning. In Edelkamp,

S., Frank, J., eds.: Knowledge Engineering Competition (ICKEPS), Rhode Island
and USA (2007)

24. Rozenberg, G.: Handbook of graph grammars and computing by graph transfor-
mation. Volume 1. World Scientific, Singapore and New Jersey (1997)

25. Binz, T., Leymann, F., Nowak, A., Schumm, D.: Improving the manageability
of enterprise topologies through segmentation, graph transformation, and analy-
sis strategies. In: 2012 16th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2012). (2012) 61–70

26. Loshin, D.: Master data management. Elsevier/Morgan Kaufmann, Amsterdam
and Boston (2009)

27. Gringel, P., Postina, M.: I-pattern for gap analysis. In Engels, G., Luckey, M.,
Pretschner, A., Reussner, R., eds.: Software engineering 2010. Lecture Notes in
Informatics. Gesellschaft für Informatik, Bonn (2010) 281–292

